MC74HC238A

1－of－8 Decoder／ Demultiplexer

High－Performance Silicon－Gate CMOS

The MC74HC238A is identical in pinout to the LS238．The device inputs are compatible with standard CMOS outputs；with pullup resistors，they are compatible with LSTTL outputs．

The HC238A decodes a three－bit Address to one－of－eight active－high outputs．This device features three Chip Select inputs，two active－low and one active－high to facilitate the demultiplexing， cascading，and chip－selecting functions．The demultiplexing function is accomplished by using the Address inputs to select the desired device output；one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states．

Features

－Output Drive Capability： 10 LSTTL Loads
－Outputs Directly Interface to CMOS，NMOS and TTL
－Operating Voltage Range： 2.0 to 6.0 V
－Low Input Current： $1.0 \mu \mathrm{~A}$
－High Noise Immunity Characteristic of CMOS Devices
－In Compliance with the Requirements Defined by JEDEC Standard No．7A
－Chip Complexity： 100 FETs or 29 Equivalent Gates
－These are $\mathrm{Pb}-$ Free Devices＊
ON

ON Semiconductor ${ }^{\circledR}$

http：／／onsemi．com

MARKING DIAGRAMS

PDIP－16 N SUFFIX CASE 648	16
	凸凸凸凸囚凸囚
	MC74HC238AN
	O AWLYYWWG

SOIC－16
D SUFFIX
CASE $751 B$

16

TSSOP－16 DT SUFFIX CASE 948F
A＝Assembly Location
WL，L＝Wafer Lot
YY，Y＝Year
WW，W＝Work Week
G or •＝Pb－Free Package
（Note：Microdot may be in either location）

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet．
＊For additional information on our Pb－Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

A0 \square^{\bullet}	16
A1 [2	15
A2 3	14
CS2 54	13
CS3 [5	12
CS1-6	11
Y7 [7	10
GND [8	9

Figure 1. Pin Assignment

Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC238ANG	PDIP-16 (Pb-Free)	500 Units / Rail
MC74HC238ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC238ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74HC238ADTR2G	TSSOP-16*	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

TRUTH TABLE

Inputs						Outputs							
CS1	CS2	CS3	A0	A1	A2	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y7
H	X	X	X	X	X	L	L	L	L	L	L	L	L
X	H	X	X	X	X	L	L	L	L	L	L	L	L
X	X	L	X	X	X	L	L	L	L	L	L	L	L
L	L	H	L	L	L	H	L	L	L	L	L	L	L
L	L	H	H	L	L	L	H	L	L	L	L	L	L
L	L	H	L	H	L	L	L	H	L	L	L	L	L
L	L	H	H	H	L	L	L	L	H	L	L	L	L
L	L	H	L	L	H	L	L	L	L	H	L	L	L
L	L	H	H	L	H	L	L	L	L	L	H	L	L
L	L	H	L	H	H	L	L	L	L	L	L	H	L
L	L	H	H	H	H	L	L	L	L	L	L	L	H

MC74HC238A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$V_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{C C}+0.5$	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{C C}+0.5$	V
$1{ }_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - Plastic DIP: $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: - 6.1 $\mathrm{W} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ (Figure 2) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 500 \\ 400 \end{gathered}$	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathbf{V} \end{gathered}$	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq \mathbf{8 5}^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {lout }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \mid \mathrm{l}_{\text {out }} \end{array} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	2.0 4.5 6.0 3.0 4.5 6.0	1.9 4.4 5.9 2.48 3.98 5.48	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \\ & \hline 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	1.9 4.4 5.9 2.20 3.70 5.20	V

V_{OL}	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \mid & l_{\text {out }} \end{aligned} \leq 2.4 \mathrm{~mA}, ~ \mid l_{\text {out }} \leq 4.0 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $\left.\operatorname{Input} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Input A to Output Y (Figures 3 and 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 135 \\ & 90 \\ & 27 \\ & 23 \end{aligned}$	$\begin{gathered} \hline 170 \\ 125 \\ 34 \\ 29 \end{gathered}$	$\begin{aligned} & 205 \\ & 165 \\ & 41 \\ & 35 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{pLH}},$	Maximum Propagation Delay, CS1 to Output Y (Figures 4 and 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 110 \\ & 85 \\ & 22 \\ & 19 \end{aligned}$	$\begin{aligned} & 140 \\ & 100 \\ & 28 \\ & 24 \end{aligned}$	$\begin{gathered} 165 \\ 125 \\ 33 \\ 28 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Maximum Propagation Delay, CS2 or CS3 to Output Y (Figures 5 and 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 120 \\ & 90 \\ & 24 \\ & 20 \end{aligned}$	$\begin{gathered} 150 \\ 120 \\ 30 \\ 26 \end{gathered}$	$\begin{aligned} & 180 \\ & 150 \\ & 36 \\ & 31 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 4 and 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{\mathbf { V } _ { \mathbf { C C } } = \mathbf { 5 . 0 } \mathbf { V }}$	
C_{PD}	Power Dissipation Capacitance (Per Package)*	55	pF

[^0]
SWITCHING WAVEFORMS

Figure 3.

Figure 4.

*Includes all probe and jig capacitance
Figure 6. Test Circuit

PIN DESCRIPTIONS

ADDRESS INPUTS

A0, A1, A2 (Pins 1, 2, 3)

Address inputs. These inputs, when the chip is selected, determine which of the eight outputs is active-low.

CONTROL INPUTS

CS1, CS2, CS3 (Pins 6, 4, 5)

Chip select inputs. For CS1 at a high level and CS2, CS3 at a low level, the chip is selected and the outputs follow the

Address inputs. For any other combination of CS1, CS2, and CS3, the outputs are at a logic high.

OUTPUTS

Y0 - Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)
Active-high Decoded outputs. These outputs assume a high level when addressed and the chip is selected. These outputs remain low when not addressed or the chip is not selected.

EXPANDED LOGIC DIAGRAM

PACKAGE DIMENSIONS

PDIP-16
N SUFFIX
CASE 648-08
ISSUE T

SOIC-16
D SUFFIX
CASE 751B-05
ISSUE J

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
2. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
3. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	9.80	10.00	0.386	0.393	
B	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	00°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

PACKAGE DIMENSIONS

TSSOP-16
DT SUFFIX
CASE 948F-01
ISSUE A

ON Semiconductor and OiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: *Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.

