Dual 5-Input Majority Logic Gate

The MC14530B dual five-input majority logic gate is constructed with P -channel and N -channel enhancement mode devices in a single monolithic structure. Combinational and sequential logic expressions are easily implemented with the majority logic gate, often resulting in fewer components than obtainable with the more basic gates. This device can also provide numerous logic functions by using the W and some of the logic (A thru E) inputs as control inputs.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {DD }}$	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {Stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

LOGIC TABLE

INPUTS A B C D E	W	Z
For all combinations of inputs where three or more inputs are logical "0".	0	1
	1	0
For all combinations of inputs where three or more inputs are logical "1".	0	0
	1	1

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open.

L SUFFIX CERAMIC CASE 620 PSUFIX
PLASTIC

D SUFFIX
SOIC
CASE 751B
ORDERING INFORMATION

MC14XXXBCP	Plastic
MC14XXXBCL	Ceramic
MC14XXXBD	SOIC

$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages.

REV 3
1/94

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Characteristic	Symbol	$\begin{aligned} & \text { VDD } \\ & \text { Vdc } \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D}$ or 0 "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \\ \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & 1.2 \\ & 2.5 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 2.5 \\ & 3.0 \end{aligned}$	-	$\begin{gathered} 1.15 \\ 2.4 \\ 2.9 \end{gathered}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.85 \\ 7.6 \\ 12.1 \end{gathered}$	-	$\begin{gathered} 3.75 \\ 7.5 \\ 12 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.75 \\ 7.5 \\ 12 \end{gathered}$	-	Vdc
Output Drive Current $\left(\mathrm{VOH}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $(\mathrm{VOH}=9.5 \mathrm{Vdc})$ $\left(\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{VOL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{I}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	lin	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & 0.0005 \\ & 0.0010 \\ & 0.0015 \end{aligned}$	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & \hline 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.75 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(1.50 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(2.25 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \end{aligned}$							$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

* To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 p F)+\left(C_{L}-50\right) V f k
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.002$.

PIN ASSIGNMENT

SWITCHING CHARACTERISTICS* ${ }^{*}\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

Characteristic	Symbol	VDD	Min	Typ \#	Max	Unit
	$\begin{aligned} & \hline \mathrm{t} \mathrm{LLH}, \\ & \mathrm{t} \text { THL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Propagation Delay Time } \\ & \text { A, } \mathrm{C}, \mathrm{~W}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{B}, \mathrm{E}=\mathrm{E} \text { nd; } \mathrm{D}=\text { Pulse Generator } \\ & \text { tPLH }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+290 \mathrm{~ns} \\ & \text { tPLH }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+127 \mathrm{~ns} \\ & \text { tPLH }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+85 \mathrm{~ns} \end{aligned}$	tPLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 375 \\ & 160 \\ & 110 \end{aligned}$	$\begin{aligned} & 960 \\ & 400 \\ & 300 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+345 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+162 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+95 \mathrm{~ns} \end{aligned}$	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 430 \\ & 195 \\ & 120 \end{aligned}$	$\begin{gathered} \hline 1200 \\ 540 \\ 410 \end{gathered}$	ns
A, B, C, D, E = Pulse Generator; W = VDD tPLH $=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+170 \mathrm{~ns}$ tPLH $=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns}$ tPLH $=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~ns}$	tPLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 255 \\ 120 \\ 86 \end{gathered}$	$\begin{aligned} & 640 \\ & 300 \\ & 210 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tPHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+195 \mathrm{~ns} \\ & \mathrm{tPHL}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+92 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{tPHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns} \end{aligned}$	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 280 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 750 \\ & 330 \\ & 250 \end{aligned}$	ns
$\begin{aligned} \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E} & =\mathrm{Gnd} ; \mathrm{W}=\text { Pulse Generator } \\ \text { tpHL, tPLH } & =(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+145 \mathrm{~ns} \\ \text { tpHL, tPLH } & =(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+72 \mathrm{~ns} \\ \text { tpHL, tPLH } & =(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} 230 \\ 105 \\ 75 \\ \hline \end{gathered}$	$\begin{array}{r} 575 \\ 265 \\ 190 \\ \hline \end{array}$	ns

* The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test
Circuit and Waveform

\mathbf{x}	\mathbf{y}	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	0
0	1	\mathbf{Q}
0	0	\mathbf{Q}
1	1	1

A flip-flop that will change only when both inputs agree.

ASTABLE MULTIVIBRATOR

\mathbf{x}	\mathbf{y}	$\mathbf{Q}_{\mathbf{n + 1}}$
0	0	1
0	1	2τ
1	0	2τ
1	1	1

A flip-flop with three output conditions, where the third state is in oscillation between " 1 " and " 0 ". The period of oscillation is twice the delay of the gate and the feedback element.

COINCIDENT FLIP-FLOP

$\mathbf{t}_{\mathbf{x}}$	\mathbf{y}	\mathbf{z}	$\mathbf{Q}_{\mathbf{n}+\boldsymbol{1}}$
0	0	0	0
0	0	1	$\mathrm{Q}_{\mathbf{n}}$
0	1	0	Q_{n}
0	1	1	Q_{n}
1	0	0	Q_{n}
1	0	1	Q_{n}
1	1	0	$\mathbf{Q n}$
1	1	1	1

The flip-flop changes state only when all " 1 's" or all "0's" are entered. This configuration may be extended by cascading M_{5} gates to cover n-inputs where all inputs must be " 1 ' s " or " 0 's" before the output will change. As an example, this configuration is useful for controlling an n-stage up/down counter that is to cycle from a minimum to maximum count and back again without flipping over (from all "1's" to all "0's".)

BASIC COMBINATIONAL FUNCTIONS

5-INPUT MAJORITY GATES

3-INPUT MAJORITY GATES

3-INPUT AND GATE

3-INPUT NOR GATE

3-INPUT NAND GATE

DOUBLING THE WEIGHT OF INPUT VARIABLE A BY TYING IT TO ANY TWO INPUTS
 the test bit To matches or correlates with 3,4 or 5 of the sample

5-INPUT MAJORITY LOGIC GATE APPLICATIONS

D SUFFIX

PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J

NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982.
2. CONTROLLING DIMENSION: MLLIIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALOOWABLEDAMBAR
PROTRUSION SHALL BE $0.127(0.005)$ TOTAL
 IN EXCESS OF THE D DIMENSION A.
MAXIMUM MATERAL CONDITION.

DIM	MILLIMETERS		INCHES		
	MIN		MAX	MIN	
MAX					
A	9.80	10.00	0.386	0.393	
B	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27		BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0	7°	7°	0°	
P	5.80	6.20	0.229	$7^{\circ} 0.244$	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , ds are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; $8 B$ Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

