

HENAN FOSEN ELECTRONICS TECHNOLOGY CO., LTD.

SPECIFICATION FOR APPROVAL

FORMALDEHYDE MODULE MODEL : FS00501

Customer	XXXXXXXX
Product Name	Formaldehyde module
Model	FS00501
Specification Version	2015-10-08
Specification Status	□ Sample □ Mass Production
Sample specification	Apply to short run production
The specification for mass production	Apply to mass production

Customer	Customer Approval			
Approval	Date	Check	Prepare	Data

Note: No prior notice will be given for any change on targeted improvement as if it does not affect the performance of product .Any objection shall be submitted to us once available.

Table of Contents

- 1. Product description
- 2.Module characteristics
- 3.Main application
- 4. Technique index
- 5.Pin name
- 6.Communication protocol
- 7 .Cross Interference Gas Characteristics List
- 8.Data output characteristics of sensor
- 9.Size
- 10.Cautions

1. Product description

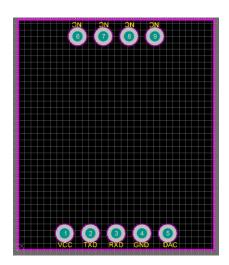
FS00501 Electrochemical formaldehyde module using high stability gas sensor, high-performance microprocessors, providing digital output, easy to use. The module uses precise automated calibration, testing equipment, reducing the interference of human factors, mass production mean time to ensure the accuracy of the data, good consistency.

2. Module characteristics

- High sensitivity, high stability, high resolution
- Good anti-interference ability, with temperature compensation
- Good linear output
- Low power consumption, long service life
- Provide UART, DAC output mode

3. Main application

- Air Quality monitors, portable instrument, air cleaner
- Fresh air ventilator, air conditioning, equipment for smart home
- Hospital, hotel and school and locus public



4. Technique index

Formaldehy	de module(FS00501)Technical index
Detection of gas	Formaldehyde
Interference gas	Ethanol, methanol, phenol and other gases
Output mode	UART output (3.3V)
Output mode —	DAC(0.4 \sim 2V Standard voltage signal)(Reserve)
Operating voltage	3.7V~6V
Operating current	<10mA
Warm up time	≤3min
Response time	≤60s
Recovery time	≤60s
Range	0~3ppm
Resolution ratio	0.01 ppm
Operating temperature	-10°C∼50°C
Operating humidity	15%RH-90%RH (No condensation)
Storage temperature	-20°℃~60° ℃
Service life	2years (in the air)
	Table1 Technique index

*NB: Sensor performance tested under standard conditions of 293K, 1atm., 35%RH. Sensors are best stored at 20°C in sealed plastic bags for maximum storage life.

Note: the needle is 2.0mm pitch (from the side with sensor)

Pin name	Pin description
PIN1	Vin (voltage input 3.7V \sim 6V)
PIN2	UART (TXD) $0\sim$ 3.3V data output
PIN3	UART (RXD) $0\sim$ 3.3V data input
PIN4	GND
PIN5	DAC(0.4 \sim 2V,Corresponds to 0-full scale)
PIN6	Suspended
PIN7	Suspended
PIN8	Suspended
PIN9	Suspended

Table2 Digital pin interface definition

6. Communication protocol

1.General settings

	Table3
Baud rate	9600
Data bit	8 bits
Stop bit	1 bit
Check bit	No

2.Communication command

Communication is divided into active upload and question-and-answer mode. The factory defaults to active upload and sends concentration values every 1S interval. The command line format is as follows:

	Table 4							
0	1	2	3	4	5	6	7	8
Start bit	Device type	Unit	Decimals No	Gas concentration High bit (ppb)	Gas concentration Low bit (ppb)	Full range High bit(ppb)	Full range Low bit(ppb)	Check value
0xff	0x17	0x04	0x00	0x00	0xD3	0x07	0xD0	0x3B
	Gas concentration value - (Gas concentration high bit * 256 + Gas concentration low bit) / 1000 Unit opm							

Gas concentration value = (Gas concentration high bit * 256 + Gas concentration low bit) / 1000 Unit:ppm

Switch to question-and-answer format. The command line format is as follows:

				Table 5				
0	1	2	3	4	5	6	7	8
Start bit	Function code	Switch command	Q&A	Reserved	Reserved	Reserved	Reserved	Check value
Oxff	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

Switch to active upload. The command line format is as follows:

0	1	2	3	Table 6	5	6	7	8
Start bit	Function code	Switch command	Active upload	Reserved	Reserved	Reserved	Reserved	Check value
Oxff	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

The format of reading gas concentration values is as follows:

0	1	2	3	4	5	6	7	8
Start bit	Function code	Command	Reserved	Reserved	Reserved	Reserved	Reserved	Check value

FOS	ENSOR				FORM	ALDEHYDI	E MODULE	FS00501
Oxff	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

The sensor return value format is as follows:

			Ta	ble 8				
0	1	2	3	4	5	6	7	8
Start bit	Reserv ed	Gas concentration High bit (ppb)	Gas concentration Low bit (ppb)	Reser ved	Reserv ed	Gas concentration High bit (ppb)	Gas concentration Low bit (ppb)	Check value
0xff	0x86	0x00	0x2A	0x00	0x00	0x00	0x2A	0x30
	<u></u>	antration value - (Car	a concentration high h	** 050 .	Casasa	optration low hit)	/ 1000 Unition	

Gas concentration value = (Gas concentration high bit * 256 + Gas concentration low bit) / 1000 Unit:ppm

Attached: Check algorithm

* Function name: unsigned char FucCheckSum(unsigned char *i,unsigned char I)

* Functional Description: Sum check (take the sum of $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$ of the send or receive protocol)

* Function Description: the array of elements 1 - the penultimate element and take the sum (the

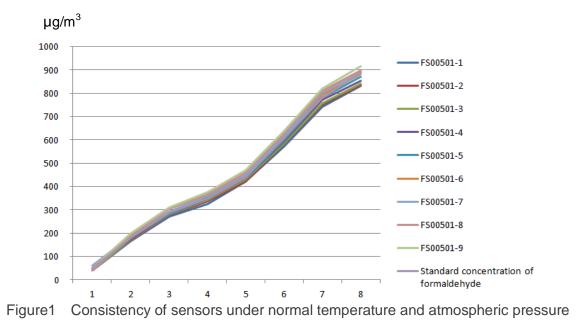
number of elements must be greater than 2)

unsigned char FucCheckSum(unsigned char *i,unsigned char I)

```
{
```

```
unsigned char j,tempq=0;
i+=1;
for(j=0;j<(I-2);j++)
{
    tempq+=*i;
    i++;
}
tempq=(~tempq)+1;
return(tempq);
```

}



7. Cross Interference Gas Characteristics List

Substance	Cross Sensitivity (%)
CO	1
H2S	No data
H2	0.1
SO2	12
NO2	No data
NO	No data
CI2	-3
C2H4	No data
NH3	0.0
CO2	0.0
Ethanol, methanol	50
Phenol	7
Water vapour	0.0
Ta	able 9

*NB: Within specified range. Step changes in %RH produce short term transient response

8. Data output characteristics of sensor

FORMALDEHYDE MODULE FS00501

♦ Users should pay attention to the problem of formaldehyde sensor's permeability when opening moulds, and try to make the sensor's permeability hole contact with the outside air directly. If the sensor is located in the middle of the moulds, the permeability of moulds must be

10. Cautions

С 0000

Picture 1 : Appearance size (Unit mm)

 2 ± 0.05

FORMALDEHYDE MODULE FS00501

increased, or fans should be considered in design, and odorless materials should be used.

The module avoids contact with organic solvents (including silica gel and other adhesives), coatings, reagents, oils and high concentration gases. Do not place modules near silica compounds, and do not clean sensor surfaces with organic solvents.

♦ Do not place the module in a high concentration of organic gas for a long time. Long term placement will cause the sensor zero to drift. As far as possible in the normal temperature and humidity of clean air environment custody.

- ♦ The module can not withstand excessive impact or vibration.
- \diamond The module for the first time to use the need to preheat more than 5 minutes.
- ♦ Do not apply the module to systems involving personal safety.
- \diamond Do not install the module in a strong air convection environment.

HENAN FOSEN ELECTRONICS TECHNOLOGY CO., LTD. Tel: +86-371-53308389 Email : service@hnfosen.com Consultion: 9:00AM to 18:00P (From Monday to Friday) Web: www.hnfosen.com Add: NO. 11 Changchun Road,High-tech District, Zhengzhou .China